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Fatty Acids Identified in the Burmese
Python Promote Beneficial
Cardiac Growth
Cecilia A. Riquelme,1 Jason A. Magida,1 Brooke C. Harrison,1 Christopher E. Wall,1

Thomas G. Marr,2 Stephen M. Secor,3 Leslie A. Leinwand1*

Burmese pythons display a marked increase in heart mass after a large meal. We investigated
the molecular mechanisms of this physiological heart growth with the goal of applying this
knowledge to the mammalian heart. We found that heart growth in pythons is characterized by
myocyte hypertrophy in the absence of cell proliferation and by activation of physiological
signal transduction pathways. Despite high levels of circulating lipids, the postprandial python
heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of
pathways of fatty acid transport and oxidation combined with increased expression and activity
of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty
acids in python plasma that promotes physiological heart growth when injected into either
pythons or mice.

Themammalian heart is a highly adaptable
organ that demonstrates remarkable cel-
lular remodeling in the face of both path-

ological and physiological stimuli. Pathological

hypertrophic signaling cascades, including those
mediated by the a1-adrenergic and endothelin
receptors, can be activated by insults such as
myocardial infarction, chronic hypertension, or
geneticmutations affecting sarcomeric or calcium-
handling proteins. This ultimately results in in-
creased cell size, enhanced sarcomere assembly,
and activation of a “fetal” gene program, with in-
creased expression of b-myosin heavy chain (b-
MHC), a–skeletal actin, atrial natriuretic peptide,
and brain natriuretic peptide, accompanied by re-
duced expression ofa-MHCand SERCA2 (sarco-

plasmic reticulumCa2+ adenosine triphosphatase–2)
(1–3).

Pathological insults also typically result in a
switch in metabolic substrate utilization from lip-
id oxidation to glucose utilization and increased
apoptosis and fibrosis (1, 3). Conversely, physio-
logical cardiac hypertrophy resulting from post-
natal growth, pregnancy, or exercise is primarily
mediated by insulin-like growth factor–1 (IGF-1)
signaling and activation of phosphatidylinositol
3-kinase (PI3K)–Akt signaling in the absence of
fetal gene program activation (4, 5). Unlike path-
ological cardiac hypertrophy, this adaptive hyper-
trophy does not appear to be detrimental to cardiac
function. In fact, exercise-induced physiological
cardiac growth protects the heart against patho-
logical stimuli such as pressure overload (6).

The infrequently feeding Burmese python
(Python molurus) has been described as a model
of extreme metabolic regulation in which many
organs, including the heart, increase in mass after
a large meal (7, 8). Whereas most mammalian
models of physiological hypertrophy typically
demonstrate modest hypertrophy (~10 to 20%)
after weeks of stimulation, the python heart grows
in mass by 40% within 48 to 72 hours after con-
sumption of a large meal (7–9). This remarkable
cardiac hypertrophy is accompanied by increased
cardiac output and appears to be an adaptive
response to support the large (factor of ~44) in-
crease in postprandial metabolic rate, accom-
panied by increased systemic nutrient transport
and widespread organ growth, required to ac-
commodate such a large meal (7–12). The car-
diac hypertrophy observed in P. molurus has
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Fig. 1. Postprandial cardiac growth in the python is characterized by cel-
lular hypertrophy and activation of protein synthesis pathways. (A) Masson
trichrome–stained python hearts depicting pronounced postprandial cardiac
hypertrophy. Scale bar, 2 mm. (B) BrdU staining of 0- and 1-dpf python hearts
shows no evidence of postprandial cellular proliferation. Python small in-

testine is included as a positive control (brown nuclear staining). Scale bar,
50 mm. (C) The number of nuclei per field is reduced post-feeding. Error bars
represent TSE; n = 4 per condition; *P < 0.05 versus 0 dpf. (D) Immunoblot
analysis reveals increased phosphorylation of AMPK, Akt, GSK3b, and mTOR
in the postprandial python heart.
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been described, but the underlying molecular
and cellular mechanisms have yet to be deter-
mined (7, 8, 13). Given that pathological cardiac
hypertrophy is a leading predictor of mortality,
we sought to understand the cellular and molec-
ular components of this rapid cardiac enlarge-
ment and potentially identify previously unknown
mechanisms regulating physiological cardiac
growth.

Similar to previous reports, we observed a
progressive increase in heart size over the post-
feeding time period (Fig. 1A and fig. S1A), with
a maximum increase seen at 3 days post-feeding
(dpf ) (fig. S1A) (14). As in mammals, cardiac
growth in the python appeared to be hypertrophic
rather than hyperplastic, as there was no sign of
5-bromo-2´-deoxyuridine (BrdU) incorporation
in the postprandial heart (Fig. 1B). Although the
cellular architecture of the python ventricle did
not allow for reliable quantification of myocyte
size (fig. S1B), we observed a significant reduc-
tion in the number of nuclei per field in the 3-dpf
ventricle, providing indirect evidence of cellu-
lar hypertrophy in the absence of cell division
(Fig. 1C).

The fasted python myocardium was signif-
icantly more fibrotic than a normal mammalian

heart (~18% versus ~1 to 2%) (15), and the de-
gree of fibrosis remained relatively unchanged
throughout digestion of the meal (fig. S1C). The
postprandial python heart demonstrated an
atypical pattern of gene expression, with in-
creased expression of both SERCA2 and a–
skeletal actin mRNA, as well as a progressive
increase in both MYH7 (encoding b-MHC) and
the less characterized striated muscle myosin
heavy-chain gene MYH15, which also encodes
the predominant MHC isoform expressed in the
chicken heart (fig. S2) (16). Western blot anal-
yses revealed increased phosphorylation of
adenosine monophosphate–activated protein ki-
nase (AMPK), Akt, glycogen synthase kinase–3b
(GSK3b), and mammalian target of rapamycin
(mTOR) during the postprandial period (Fig. 1D
and fig. S3), indicating robust activation of pro-
tein synthetic pathways in the postprandial py-
thon heart.

Consistent with published observations (7),
we observed a factor of 52 increase in plasma
triglycerides (TAG) and a factor of 3 increase in
non-esterified fatty acids (NEFAs) at 1 dpf (Fig.
2A). In most mammals, comparable plasma tri-
glyceride concentrations would result in patho-
genic lipid deposition in nonadipose tissues such

as the heart (17). In the python heart, however,
thin-layer chromatography (TLC) and Oil Red O
analysis did not reveal any evidence of lipid
accumulation during the postprandial period
(Fig. 2B and fig. S4A).We also found no change
in cardiac transcript levels of very-low-density
lipoprotein receptor, which suggests that utili-
zation of triglyceride-rich lipoprotein particles
is not altered after feeding (fig. S4B). Despite
this lack of cardiac lipid accumulation, expres-
sion of the fatty acid transporter CD36 was in-
creased by a factor of 13 at 1 dpf (Fig. 2C).mRNA
levels of both muscle-type fatty acid binding
protein (mFABP) and carnitine palmitoyltrans-
ferase 1B (CPT1B) were significantly increased
after feeding (Fig. 2C), as were mitochondrial
cytochrome oxidase (COX2) expression and nic-
otinamide adenine dinucleotide tetrazolium re-
ductase (NADH-TR) staining (Fig. 2B). We also
observed increased expression of several oxida-
tive genes at 1 and 3 dpf, includingmedium-chain
acyl-CoAdehydrogenase (MCAD), enoyl-CoAhy-
dratase (ECHD), and acetyl-CoA acyltransferase
2 (ACAA2) (Fig. 2C). Together, these data sug-
gest that there is increased oxidative capacity in
the postprandial python heart.

These apparent alterations in mitochondrial
electron transport chain flux were coupled with
a significant increase in both expression and
activity of the cardioprotective free radical–
scavenging enzyme superoxide dismutase–2
(SOD2) (Fig. 2D) (18). We found no evidence of
increased reactive oxygen species in the post-
prandial heart (fig. S5).

To investigate the possibility that the sys-
temic changes observed in the python were due
to circulating factors, we tested the effect of py-
thon plasma on neonatal rat ventricular myo-
cytes (NRVMs) in culture. Treatment of NRVMs
with fed plasma significantly increased cell size
and a-actinin organization (Fig. 3A and fig. S6).
The degree of NRVMgrowth induced by the spe-
cific postprandial plasma time points mimicked
the time profile of in vivo python heart growth
(Fig. 3A and fig. S1A), which suggests that the
plasma concentrations of the hypertrophic fac-
tors varied throughout digestion. Whereas cells
treated with the a-adrenergic agonist phenyl-
ephrine clearly showed robust activation of path-
ological patterns of gene expression, we found
no such gene activation in cells treated with py-
thon plasma (Fig. 3B). We also determined that
treatment of NRVMs with fed python plasma
resulted in increased IGF-1 mRNA expression
and enhanced the phosphorylation of mTOR and
p70S6K (fig. S7). Intriguingly, fasted or fed py-
thon plasma significantly repressed activity of
the transcription factor NFAT, a canonical indi-
cator of pathological hypertrophic signaling, in
NRVMs (Fig. 3C). Finally, treatment of NRVMs
with fed python plasma significantly increased the
expression of genes encoding key lipid-handling
(mFABP) and metabolism proteins (CPT1B,
MCAD, and ACAA2) in a manner similar to that
observed in the fed python heart (fig. S8).
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Fig. 2. The postprandial python heart has increased expression of fatty acid transport, handling,
and oxidation genes along with enhanced free radical–scavenging capacity. (A) Plasma non-
esterified fatty acid (NEFA) and triacylglyceride (TAG) concentrations are significantly increased after
feeding. (B) Oil Red O staining reveals no cardiac accumulation of neutral lipids at 3 dpf. Mito-
chondrial staining is increased in the post-fed python heart as determined by cytochrome c oxidase II
(COX2) immunostaining and NADH-tetrazolium reductase (NADH-TR) histochemistry. Scale bar,
50 mm. (C) Increased mRNA expression of CD36, mFABP, CPT1B, and the b-oxidation proteins MCAD,
ECHD, and ACAA2 is observed after feeding. (D) The mRNA expression and activity of mitochon-
drial SOD2 is increased post-feeding. Error bars represent TSE; n = 4 per condition; *P < 0.05 versus
0 dpf.
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Given the substantial alterations seen in post-
prandial plasma lipid content and the evidence
that heat treatment and protease K digestion
were ineffective in eliminating the prohyper-
trophic effects of the fed python plasma (fig. S9),
we focused our attention on lipid species as can-
didate prohypertrophic factors. We found that
pretreatment of NRVMs with sulfosuccinimidyl
oleate (SSO) (19), an irreversible inhibitor of
CD36, completely blocked the prohypertrophic
effect of fed plasma (fig. S10). We then analyzed
fasted and post-fed python plasma by gas chro-
matography (GC) and observed a highly complex
composition of circulating fatty acids with dis-
tinct patterns of abundance over the course of
digestion (fig. S11). On the basis of these data,
we identified five candidate fatty acids for fur-
ther analysis (fig. S12) and determined that sup-
plementing fasted python plasma with the 1-dpf
molar ratio of C14:0 (myristic acid), C16:0 (palmitic
acid), and C16:1 (palmitoleic acid) effectively
recapitulated the increase in NRVM cell diam-
eter seen with 1-dpf plasma (Fig. 3D). Similar to
the effects seen with fed python plasma, treat-
ment of NRVMs with this fatty acid mixture re-
sulted in robust up-regulation of CD36, mFABP,
CPT1, MCAD, and ACAA2 mRNA expression
(fig. S8). Despite the established, pro-apoptotic
properties of palmitic acid in cardiomyocytes
(20–22), we did not find any evidence of apoptosis
in NRVMs cultured in the presence of python
plasma or the fatty acid combination (fig. S13).
These data suggest that palmitoleic acid may pro-
tect cardiomyocytes from apoptosis in the pres-
ence of palmitic acid. Although the mechanism
for this protection is unknown, it is possible that
the presence of palmitoleic acid combined with
increased oxidative capacity and free radical–
scavenging capacity may act to reduce the gen-
eration of toxic, pro-apoptotic intermediates such
as ceramide and reactive oxygen species, and to

enhance the activity of cardioprotective pathways
such as triglyceride biosynthesis and b-oxidation
(21–23).

To investigate the ability of these fatty acids
to trigger cardiac growth in vivo, we infused
fasted pythons with the same mixture of myris-
tic, palmitic, and palmitoleic acid and determined
that this lipid infusion was as effective at stimu-
lating cardiac growth as either feeding itself or
infusion of plasma from a fed snake (Fig. 4A).
We then administered the fatty acid mixture to

mice over a 7-day period and observed a signif-
icant increase in left ventricular mass (Fig. 4B),
increased cardiomyocyte cross-sectional area
(Fig. 4B), no activation of the pathological fetal
gene program (Fig. 4C), and no evidence of al-
terations in cardiac fibrosis or lipid deposition
(fig. S14). The growth-inducing effects of the
fatty acids appeared to be cardiac-specific, as
there were no observed alterations in either liver
or skeletal muscle mass (fig. S15A). As a control,
we also administered a mixture of oleic (C18:1),
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linoleic (C18:2), and arachidonic (C20:4) acid in
the molar ratio observed in the 1-dpf python and
sawno evidence of cardiac hypertrophy (fig. S15B);
this finding suggests that the prohypertrophic
effects are specific to the mixture of myristic,
palmitic, and palmitoleic acid. Palmitoleic acid
was recently characterized as a lipokine that can
modulate systemic insulin sensitivity (24). Addi-
tionally, fatty acid ethanolamides (FAEs) have
been described as potent regulators of energy
intake, and levels of the palmitoleic acid etha-
nolamide palmitoleoylethanolamide (and other
FAEs) are markedly increased in the fed python
gastrointestinal tract (25). Together, these data
and our data suggest multiple roles for palmit-
oleic acid and its metabolites in the regulation
of insulin sensitivity, organ size, cardiac metab-
olism, and energy balance (24–26).

Our results indicate that postprandial cardiac
growth in the python is characterized by cellular
hypertrophy in the absence of hyperplasia and
activation of physiological signaling pathways.
Despite elevations in circulating triglycerides and
increased fatty acid transport, the python heart
appears to be protected from lipid deposition
through increased oxidative capacity and induc-
tion of free radical–scavenging activity. Finally,
we have shown that a combination of fatty acids,
identified in postprandial python plasma, pro-
motes physiological hypertrophy in mammalian
cardiomyocytes. Given that activation of adapt-
ive, physiological hypertrophic processes can pro-
vide functional benefit in the context of a cardiac

disease state, our data indicate that fatty acid
supplementation may provide a new mechanism
for modulating cardiac gene expression and func-
tion in mammals, and that such interventions
could augment cardiac performance in the con-
text of human disease.
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