Spring 2026 Course Search

The Herbarium: Research, Art & Botany — BIO4441.01

Instructor: Caitlin McDonough MacKenzie
Days & Time: TU,FR 2:10pm-4:00pm
Credits: 4

An herbarium is a museum of pressed plants, a record of flora following a system that dates back to the 16th century. Large herbaria at institutions like D.C.’s Smithsonian National Museum of Natural History, Chicago’s Field Museum, Cambridge’s Harvard University, and London’s Kew Gardens contain millions of specimens, collected from around the world. But, most herbaria are small herbaria, with less than 10,000 specimens.

Introduction to Cancer Biology — BIO2104.01

Instructor: Amie McClellan
Days & Time: TU,FR 10:30am-12:20pm
Credits: 4

The cells in our bodies need to grow and divide in order to make new tissue, and to repair or replace damaged tissue.  The processes that govern cell growth and division are tightly regulated. When the cells that comprise the tissues of our bodies lose the ability to properly regulate their growth and proliferation, cancer is the result.  This introductory level course will provide an overview of the basic mechanisms and genetics underlying human cancers, as well as explore current diagnostic and therapeutic strategies.

Reading and Knitting the Forested Landscape — BIO2242.01

Instructor: Caitlin McDonough MacKenzie
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

Why would a forest ecology course include an assignment to knit a wool hat? In this class we will explore the lasting impact of sheep on the Vermont landscape, from the earliest settler-colonizers through today’s small batch fiber mills and second growth forests studded with stone walls. Sheep, and especially a 19th century boom in merino sheep, radically altered Vermont’s forests and inspired early writing on conservation and sustainable land management.

Chemistry 4 — CHE4277.01

Instructor: John Bullock
Days & Time: MO,TH 3:40pm-5:30pm
Credits: 4

Part of the Chemistry 1-4 suite, this will examine the energetics of chemical changes. Focusing on the enthalpic and entropic contributions to free energy change, we will examine how energy or work can be extracted from chemical systems and how these systems behave as they tend toward equilibrium. Types of equilibria to be covered will include acid/base, solubility, phase change, metal-ligand interactions and oxidation/reduction. The energetics of electron transfer reactions will be examined along with the practical considerations of making use of such reactions to power electric devices.