Spring 2026 Course Search

Discrete Mathematics — MAT4107.01

Instructor: Katie Montovan
Days & Time: MO,TH 10:00am-11:50am
Credits: 4

Discrete mathematics studies problems that can be broken up into distinct pieces. Some examples of these sorts of systems are letters or numbers in a password, pixels on a computer screen, the connections between friends on Facebook, and driving directions (along established roads) between two cities. In this course we will develop the tools needed to solve relevant, real-world problems. Topics will include: combinatorics (clever ways of counting things), number theory and graph theory. Possible applications include probability, social networks, optimization, and cryptography.

Games and Probability — MAT2377.01

Instructor: Joe Mundt
Days & Time: T/Th 6:30PM-8:30PM
Credits: 4

Throughout history, people have played games — games of chance and games of skill. Many of us grew up playing all kinds of different games, and most of those are infused with the core tenets of statistical reasoning and understanding: probability, risk assessment, expected value, and game theory. This course will look at statistics and probability through this lens. We will consider dice, cards, and several ‘classic’ board games. We will consider situations with both complete and hidden information and how to analyze those.