Spring 2026 Course Search

Chemistry 2: Organic Structure and Bonding (with Lab) — CHE4212.01

Instructor: Fortune Ononiwu
Days & Time: T/F 10:30AM-12:20PM, W 2:10PM-5:50PM (Lab)
Credits: 5

Building on structural and reactivity insights developed in Chemistry 1, this course delves into molecular structure and modern theories of bonding, especially as they relate to the reaction patterns of functional groups. We will focus on the mechanisms of reaction pathways and develop an understanding for how those mechanisms are experimentally explored. There will be numerous readings from the primary literature, including some classic papers that describe seminal experiments.

The Herbarium: Research, Art & Botany — BIO4441.01

Instructor: Caitlin McDonough MacKenzie
Days & Time: TU,FR 2:10pm-4:00pm
Credits: 4

An herbarium is a museum of pressed plants, a record of flora following a system that dates back to the 16th century. Large herbaria at institutions like D.C.’s Smithsonian National Museum of Natural History, Chicago’s Field Museum, Cambridge’s Harvard University, and London’s Kew Gardens contain millions of specimens, collected from around the world. But, most herbaria are small herbaria, with less than 10,000 specimens.

Cell Biology (with lab) — BIO4114.01

Instructor: Amie McClellan
Days & Time: Tu/F 8:30AM-10:20AM, W 8:30AM-12:10PM (Lab)
Credits: 5

The cell is the fundamental organizational unit of all living organisms on Earth. In this class we will investigate cell structure and function, learn about DNA replication and transcription, find out how proteins are synthesized, folded, localized, and regulated, ultimately coming to understand how interfering with cell biological processes can result in disease.  In the lab, students will gain experience with tools and methodologies pertinent to cell biology concepts, as well as techniques used in resear

Introduction to Cancer Biology — BIO2104.01

Instructor: Amie McClellan
Days & Time: TU,FR 10:30am-12:20pm
Credits: 4

The cells in our bodies need to grow and divide in order to make new tissue, and to repair or replace damaged tissue.  The processes that govern cell growth and division are tightly regulated. When the cells that comprise the tissues of our bodies lose the ability to properly regulate their growth and proliferation, cancer is the result.  This introductory level course will provide an overview of the basic mechanisms and genetics underlying human cancers, as well as explore current diagnostic and therapeutic strategies.

Physics II: Electricity and Magnetism (with Lab) — PHY4327.01

Instructor: Tim Schroeder
Days & Time: M/Th 10:00AM-11:50AM, W 8:30AM-12:10PM (Lab)
Credits: 5

How does influence travel from one thing to another? In Newton’s mechanics of particles and forces, influences travel instantaneously across arbitrarily far distances. Newton himself felt this to be incorrect, but he did not suggest a solution to this problem of “action at a distance.” To solve this problem, we need a richer ontology: The world is made not only of particles, but also of fields. As examples of the field concept, we study the theory and applications of the electric field and the magnetic field.

Reading and Knitting the Forested Landscape — BIO2242.01

Instructor: Caitlin McDonough MacKenzie
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

Why would a forest ecology course include an assignment to knit a wool hat? In this class we will explore the lasting impact of sheep on the Vermont landscape, from the earliest settler-colonizers through today’s small batch fiber mills and second growth forests studded with stone walls. Sheep, and especially a 19th century boom in merino sheep, radically altered Vermont’s forests and inspired early writing on conservation and sustainable land management.

Stars and Galaxies — PHY2106.01

Instructor: Hugh Crowl
Days & Time: MO,TH 10:00am-11:50am
Credits: 4

All but a handful of the objects you see in the night sky are stars in our Galaxy, the Milky Way. Although we know about these stars only from studying their light, we know today that they are not just points of light, but large, gravitationally‐bound balls of plasma governed by the laws of physics. Stars, together with dust, gas, and dark matter, are found in larger structures – galaxies. In turn, galaxies, are located in even larger structures called galaxy groups and galaxy clusters.

Advanced Observing Projects — PHY4326.01

Instructor: Hugh Crowl
Days & Time: MO 3:40pm-5:30pm
Credits: 2

Students will observe using the telescopes at Stickney Observatory for a series of astronomical observing projects. After a range of initial assigned projects designed to acquaint students with the capabilities of the observing equipment and astrophysically interesting observations, students will propose and carry out their own observing projects looking at astrophysical phenomena of interest to them. As this is a projects class, it is expected that students will be able to devote significant time (mostly at night) observing on their own or in small teams.