Spring 2026 Course Search

Calculus: A Classical Approach — MAT4288.01

Instructor: Andrew McIntyre
Days & Time: TU,FR 2:10pm-4:00pm
Credits: 4

This course covers the breadth of university calculus: differentiation, integration, infinite series, and ordinary differential equations. It focuses on concepts and interconnections. In order to cover this much material, computational techniques are de-emphasized. The approach is historically based and classical, following original texts where possible.

Multivariable Calculus — MAT4301.01

Instructor: Andrew McIntyre
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

Multivariable calculus is one of the core parts of an undergraduate mathematics curriculum. Introductory calculus mostly concentrates on situations where there is one input and one output variable; multivariable extends differentiation, integration, and differential equations to cases where there are multiple input and output variables. In this way, multivariable calculus combines calculus and linear algebra; the subject can also be called vector and matrix calculus.

Metric Spaces and Geometry — MAT4162.01

Instructor: Andrew McIntyre
Days & Time: TU,FR 8:30am-10:20am
Credits: 4

Everything is geometry! This class is about two things: first, about how mathematicians have extended the concept of "geometry" beyond triangles and circles, into higher-dimensional spaces, curved spaces, spaces of functions, discrete spaces, and more. Second, about how this extension of "geometry" can allow us to apply our powerful geometric intuition to a wide range of problems that might not initially seem geometric, both within mathematics, and in physics, computer science, and elsewhere.

Statistical Methods for Data Analysis — MAT2104.01

Instructor: Katie Montovan
Days & Time: TU,FR 8:30am-10:20am
Credits: 4

In this course, we will focus on developing the statistical skills needed to answer questions by collecting data, designing experimental studies, and analyzing large publicly available datasets. The skills learned will also help students to be critical consumers of statistical results. We will use a variety of datasets to develop skills in data management, analysis, and effective presentation of results.

Discrete Mathematics — MAT4107.01

Instructor: Katie Montovan
Days & Time: MO,TH 10:00am-11:50am
Credits: 4

Discrete mathematics studies problems that can be broken up into distinct pieces. Some examples of these sorts of systems are letters or numbers in a password, pixels on a computer screen, the connections between friends on Facebook, and driving directions (along established roads) between two cities. In this course we will develop the tools needed to solve relevant, real-world problems. Topics will include: combinatorics (clever ways of counting things), number theory and graph theory. Possible applications include probability, social networks, optimization, and cryptography.

Physics II: Electricity and Magnetism (with Lab) — PHY4327.01

Instructor: Tim Schroeder
Days & Time: M/Th 10:00AM-11:50AM, W 8:30AM-12:10PM (Lab)
Credits: 5

How does influence travel from one thing to another? In Newton’s mechanics of particles and forces, influences travel instantaneously across arbitrarily far distances. Newton himself felt this to be incorrect, but he did not suggest a solution to this problem of “action at a distance.” To solve this problem, we need a richer ontology: The world is made not only of particles, but also of fields. As examples of the field concept, we study the theory and applications of the electric field and the magnetic field.

Games and Probability — MAT2377.01

Instructor: Joe Mundt
Days & Time: T/Th 6:30PM-8:30PM
Credits: 4

Throughout history, people have played games — games of chance and games of skill. Many of us grew up playing all kinds of different games, and most of those are infused with the core tenets of statistical reasoning and understanding: probability, risk assessment, expected value, and game theory. This course will look at statistics and probability through this lens. We will consider dice, cards, and several ‘classic’ board games. We will consider situations with both complete and hidden information and how to analyze those.

Stars and Galaxies — PHY2106.01

Instructor: Hugh Crowl
Days & Time: MO,TH 10:00am-11:50am
Credits: 4

All but a handful of the objects you see in the night sky are stars in our Galaxy, the Milky Way. Although we know about these stars only from studying their light, we know today that they are not just points of light, but large, gravitationally‐bound balls of plasma governed by the laws of physics. Stars, together with dust, gas, and dark matter, are found in larger structures – galaxies. In turn, galaxies, are located in even larger structures called galaxy groups and galaxy clusters.

The Physics of Light and Color — PHY2114.01

Instructor: Hugh Crowl
Days & Time: TU 8:30am-12:10pm
Credits: 2

The physics of light and color initially appears simple: light is a wave and the wavelength of light determines color. While this basic physical description of light is easy to state, going deeper quickly opens up large range of questions. How do different wavelengths of light combine to make colors? How does light from different sources interfere? How does light change path when it travels through different materials? How do humans sense light both in and outside of the visible spectrum? How does our perception of color affect how we interpret our world?

The Physics of Sound — PHY2278.02

Instructor: Hugh Crowl
Days & Time: TU 8:30am-12:10pm
Credits: 2

Physically, sound is simply the compression of air around us. However, this relatively simple description obscures a much richer understanding of sound. From how different sounds are generated and perceived to how different sounds can combine to make something new to how to design acoustically pleasant spaces, the physics of sound plays a key role. This course is about the fundamentals that underlie sound and is designed to serve as an introduction to those who are interested in going further.

Robotics and STEM Education: A Workshop — EDU2107.01

Instructor: Hugh Crowl
Days & Time: FR 10:30am-12:20pm
Credits: 1

In this course, students will gain experience with using simple programmable robots and how they can be utilized in STEM education. The focus of this class will be on learning and designing lessons for K-12 students utilizing these robots. This class is accessible for students at all levels of computer programming experience (including none). 

Special Projects in Advanced Japanese — JPN4801.01

Instructor: Ikuko Yoshida
Days & Time: TU,FR 10:30am-12:20pm
Credits: 4

This course enables students to undertake the research essential for composing their thesis or completing a project within their field of study or area of interest. Enrollment requires the submission of a comprehensive project proposal to Ikuko Yoshida, which must include a project title, a brief description, a list of relevant preparatory courses, and clearly articulated objectives and goals. 

Digital Book Project: Analyzing Social and Cultural Values in Japan — JPN4404.01

Instructor: Ikuko Yoshida
Days & Time: TU,FR 8:30am-10:20am
Credits: 4

This fourth-term Japanese course is purposefully designed to enable students to create digital books that promote cultural understanding among Japanese children. The curriculum begins with students engaging with short stories and Japanese animations to analyze expected behaviors and communication styles among Japanese children. Additionally, students examine social and cultural values in Japan—focusing on how these values are conveyed and how gender roles are represented in children’s literature and media.

Representation of Cultural Values in Japanese Children’s Books — JPN4219.01

Instructor: Ikuko Yoshida
Days & Time: MO,WE,TH 8:30am-9:50am
Credits: 5

In this second-term Japanese course, students will explore Japanese cultural values and create digital books that reflect Japanese values. Students will read Japanese children’s books and watch children’s TV shows to examine how social and cultural values are portrayed and taught. Based on their analysis and understanding of Japan's social and cultural values, students will write their own digital storybooks, which aim to teach children about embracing cultural differences as a final project.

Life and Death: Buddhism in Modern Japanese Films — JPN4604.01

Instructor: Ikuko Yoshida
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

In this sixth-term Japanese course, students will examine how Buddhism influenced Japanese thought on the afterlife and analyze how Japanese views on the relationship between life and death are depicted in Japanese films.  In the first seven weeks of the course, students will examine and discuss the history, beliefs, and deities of Buddhism, as well as their influences on society.  In the second half of the term, students will analyze how death and the common theme of reincarnation are depicted in different genres of Japanese films, such as love stories and

Advanced Observing Projects — PHY4326.01

Instructor: Hugh Crowl
Days & Time: MO 3:40pm-5:30pm
Credits: 2

Students will observe using the telescopes at Stickney Observatory for a series of astronomical observing projects. After a range of initial assigned projects designed to acquaint students with the capabilities of the observing equipment and astrophysically interesting observations, students will propose and carry out their own observing projects looking at astrophysical phenomena of interest to them. As this is a projects class, it is expected that students will be able to devote significant time (mostly at night) observing on their own or in small teams.